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1. Introduction

Spacelike Sp-branes in string theory are topological defects which exist only for a moment

in time. In perturbation theory they arise when the time coordinate obeys a Dirichlet

boundary condition and in world sheet conformal field theory (CFT) they can be described

by boundary states implementing the boundary conditions [1]. S-branes can also be consid-

ered as time dependent tachyonic kink solutions of unstable D-brane world-volume theories

and they are expected to play the role of D-branes in realizing dS/CFT duality [2].

If S-branes really exist as genuine objects then one expects to have a corresponding

supergravity description for them. Indeed, in [1, 3, 4] various time dependent supergravity

solutions were constructed for S-branes in different dimensions. It is remarkable that the

standard intersection rules for usual p-branes also arise for S-branes [5] and one can further

find solutions for nonstandard intersections [6] or intersections of p-branes with S-branes

[7]. By analytical continuations of black holes, completely regular S-brane solutions can

also be obtained [8 – 10] (for other works on S-brane solutions see, e.g., [11 – 20]).

Sp-branes in D-dimensions have transverse SO(1,D−p−2) R-symmetry. The Lorentz

invariant combination of the transverse coordinates gives a null direction, and as shown in

[4], one can construct solutions corresponding to interior and exterior regions of the light

cone which can be foliated by hyperbolic and de Sitter spaces, respectively. On the other

hand, for some physical applications it would be interesting to consider solutions where the

Lorentzian symmetry is broken (in terms of Euclidean gauge theory living on the S-brane

that would correspond to breaking of R-symmetry by giving vacuum expectation values to

scalars). One aim of this paper is to study this possibility.

It is well known that usual p-brane solutions are characterized by harmonic functions.

In general the corresponding antisymmetric tensor F obeys dF = 0 and d ∗ F = 0, and

these can be satisfied naturally using harmonic functions by writing F ∼ dH or ∗F ∼ dH
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for electric or magnetic solutions, respectively. As far as the form fields are concerned S-

branes are not very different than p-branes. On the other hand, harmonic superposition of

p-branes is possible due to supersymmetry, which is absent for S-branes. In the next section

we seek S-brane solutions which are characterized by harmonic functions. If harmonic S-

branes exist then there should be a way of avoiding a superposition principle. Indeed, as

we will see below, the form equations can be satisfied naturally by harmonic functions but

the Einstein’s equations demand linearity on the transverse space so that superposition of

different functions does not yield a new solution but simply modifies the parameters in the

total function. In the same section we also generalize harmonic S-branes where the flat

transverse spaces are replaced by general Ricci flat manifolds.

For usual p-brane backgrounds, one common procedure is to smear a transverse coor-

dinate by putting an array of parallel branes in that direction. In principle supersymmetry

is required for smearing and it is not clear how this may be achieved for S-branes. In any

case, one can still imagine a solution for S-branes distributed uniformly in time (one can

argue that stability is not a question here since ”time evolution” is fixed by hand from

the beginning like imposing a boundary condition). For such a background there is a time

translation symmetry and the corresponding solution should be static. In section 3, we

construct explicit solutions in D = 11 supergravity which can be thought to represent

time smeared S-branes where the transverse Lorentzian R-symmetry group is broken down

to its maximal orthogonal subgroup. As we will see below these backgrounds are non-

supersymmetric, asymptotically flat, generically singular in the interior but support finite

ADM masses per unit Euclidean S-brane volumes.

Finally in section 4 we obtain spacelike fluxbrane solutions in D = 11 supergravity

theory. Generically, a fluxbrane background has antisymmetric tensor field components

tangent to the transverse coordinates. Although the fluxlines have infinite extent the to-

tal charge is finite. This is interpreted as the confinement of the fluxlines by their own

gravitational field. The classical example is the Melvin solution of 4-dimensional Einstein-

Maxwell gravity [21] which describes a flux 1-brane. Later various higher dimensional

generalizations of fluxbranes were constructed in the literature (see e.g. [22 – 29]). As the

spacelike branes have recently attracted some attention in string theory, one may wonder

if there are solutions for spacelike fluxbranes. In such a background the transverse space

is Lorentzian and therefore the antisymmetric tensor field should have a component along

time direction. As we will see one can construct time dependent solutions with this prop-

erty, representing spacelike fluxbranes. Similar to usual timelike fluxbranes, the spacelike

solutions have fluxlines extending from past to future timelike infinity but the total flux

still converges despite the infinite range. This shows that the confinement of fluxlines by

gravity also works for spacelike solutions.

2. Harmonic S-branes

In this section our aim is to construct S-brane solutions characterized by harmonic func-

tions. As an example let us consider SM2 brane in eleven dimensions. The equations of
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motion for the bosonic fields of D = 11 supergravity can be written as

RMN =
1

3
FMPQRFN

PQR − 1

36
gMN FPQRS FPQRS

dF = 0, d ∗ F = F ∧ F. (2.1)

We consider the following metric1

ds2 = e2A δabdxadxb + e2B ηµν dyµdyν , (2.2)

where a, b = 1, 2, 3 and µ, ν = 0, . . . , 7. The coordinate dependencies of the metric functions

A and B are assumed to be of the form A = A(H) and B = B(H), where H = H(y) is a

function on the transverse space. For the antisymmetric tensor we take

Fabcµ =
1

2
e−7B εabc ∂µH. (2.3)

Note that dF = 0 is identically satisfied and the antisymmetric tensor equation d ∗ F = 0

gives

∂µ ∂µ H = 0. (2.4)

Using (2.4) in Einstein’s equations we find

Ä + 3Ȧ2 + 6ȦḂ +
e−12B

3
= 0, (2.5)

B̈ + 6Ḃ2 + 3ȦḂ − e−12B

6
= 0, (2.6)

Ä + 2B̈ + Ȧ2 − 2Ḃ2 − 2ȦḂ +
e−12B

6
= 0, (2.7)

Ȧ + 2Ḃ = 0, (2.8)

where dot denotes differentiation with respect to the argument (i.e. H). Eq. (2.5) fol-

lows from the worldvolume directions (M,N) = (a, b) in (2.1) and the terms coming from

(M,N) = (µ, ν) components fall into three different groups with coefficients ηµν(∂H)2,

∂µH∂νH and ∂µ∂νH. Setting them to zero separately2 gives (2.6), (2.7) and (2.8), respec-

tively. Eq. (2.8) yields A = −2B and then (2.7) implies

Ḃ2 +
e−12B

36
= 0, (2.9)

which shows that the solution space is empty. This result is not surprising since otherwise

harmonic superposition of S-branes would be possible, which is odd in the absence of

supersymmetry.

1As shown in [30] as far as the supergravity solutions are concerned the ”internal” flat spaces, spheres

or hyperboloids can be replaced by arbitrary Ricci flat, positively or negatively curved Einstein spaces,

respectively. Therefore in (2.2), for instance, the flat space spanned by (x1, x2, x3) can be replaced by any

Ricci flat manifold.
2At this point we do not want to impose any additional condition on H , thus the functions ηµν(∂H)2,

∂µH∂νH and ∂µ∂νH are assumed to be linearly independent.
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One way of proceeding is to consider type IIA* or IIB* string theories studied in [31, 32]

which can be obtained by timelike T-dualities from type IIA and IIB strings, respectively.

In supergravity actions a timelike T-duality alters the signs of the kinetic terms of the

antisymmetric tensor fields. Lifting IIA* theory to eleven dimensions and considering the

same ansatz (2.2) and (2.3) in this framework, (2.9) becomes

Ḃ2 − e−12B

36
= 0, (2.10)

which implies B = (ln H)/6. Using also A = −2B, one ends up with the Wick rotated

Euclidean p-branes studied in [31].

Another possibility is to impose ∂µ∂νH = 0 so that (2.8) is dropped from the equation

system. In this case the harmonic function H becomes

H = cµyµ + c, (2.11)

where (cµ, c) are constants. A systematic way of solving equations like (2.5)-(2.7) was

discussed in [33]. Adding (2.5) and two times (2.6) yields

(Ä + 2B̈) + 3(Ȧ + 2Ḃ)2 = 0, (2.12)

which can be solved as A + 2B = (ln H)/3. Using this in (2.6) one obtains

B̈ +
Ḃ

H
− e−12B

6
= 0, (2.13)

which has the solution

B =
1

12
ln

[

bH2 cosh2

[

ln(±H)√
b

]]

, (2.14)

where b is a constant. Eq. (2.7), on the other hand, acts like a constraint equation which

fixes b = 3/7. The end result is that

A = −1

6
ln

[

3

7
cosh2

[

√

7

3
ln(±H)

]]

,

B =
1

12
ln

[

3H2

7
cosh2

[

√

7

3
ln(±H)

]]

, (2.15)

where ± signs are for H > 0 and H < 0 regions respectively.

Let ΣH be the codimension one H = 0 hyperplane which can be spacelike, timelike or

null. In each case one can apply suitable Lorentz transformations and translations to set

H = c0t, H = c1y
1 or H = c±(t ± y1), respectively. After a coordinate transformation t̃ =

ln(c0t), it is not difficult to see that the spacelike case is identical to the time dependent SM2

brane solution with a flat transverse space. Here one discovers two additional backgrounds

corresponding to timelike and null planes. Note that superposition of different harmonic

functions (i.e. when H =
∑

i Hi) does not give a new solution but simply modifies the

constants (cµ, c). This is somehow expected in the absence of supersymmetry.
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For the null plane, (2.6) is redundant since it is actually multiplied by ηµν (∂H)2 = 0

and the solution space is larger. However, superposition with the spacelike and the timelike

backgrounds is not possible for this general class. So we impose (2.6) as an additional

equation to ensure superposition.

The electric charge of SM2 brane is given by

Q =

∫

∗F =

∫

ΣH

∗̂ dH, (2.16)

where ∗̂ is the 8-dimensional Hodge dual on the flat transverse space. The integrand is

a constant and the total charge diverges. The fluxlines are confined on ΣH , but they

have constant magnitude and infinite extent (of course it is possible to compactify ΣH to

get finite charge). The metric is singular on ΣH and at infinity along the perpendicular

direction to ΣH , i.e. when H → ±∞.

It is easy to repeat the above construction for the magnetic SM5 brane which has the

following metric

ds2 = e2A(H) δabdxadxb + e2B(H) ηµν dyµdyν , (2.17)

where a, b = 1, . . . , 6 and µ, ν = 0, . . . , 4. The antisymmetric tensor can be taken as

F =
1

2
∗̂ dH, (2.18)

where ∗̂ is the Hodge dual on the flat 5-dimensional transverse space. The form equation

d ∗ F = 0 is identically satisfied and dF = 0 implies ∂µ∂µH = 0. On the other hand

the Einstein’s equations require ∂µ∂νH = 0 and thus H is linear as in (2.11). The metric

functions can be solved as

A = − 1

12
ln

[

3

8
cosh2

[

√

8

3
ln(±H)

]]

,

B =
1

6
ln

[

3H2

8
cosh2

[

√

8

3
ln(±H)

]]

. (2.19)

Again ± signs are for H > 0 and H < 0 regions respectively. The solution carries a

magnetic charge

Q =

∫

F =

∫

ΣH

∗̂ dH, (2.20)

which diverges since the constant magnetic fluxlines extent on ΣH to infinity. When ΣH is

spacelike one can apply a Lorentz transformation to set H = c0t and the solution becomes

the usual time dependent SM5 brane with a flat transverse space after the coordinate

change t̃ = ln(c0t).

For both SM2 and SM5 branes R-symmetry groups are determined by the isometries of

the corresponding plane ΣH . For instance for SM2 brane the symmetry groups are ISO(7),

ISO(1, 6) and R× ISO(6) when ΣH is spacelike, timelike and null, respectively.

It is known that time dependent solutions (i.e. when ΣH is spacelike in our case) cannot

be supersymmetric since the ”Hamiltonian”, which can be written as the anti-commutator

of supercharges, is not a “constant”. To see if there is any unbroken supersymmetry for
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other cases let us consider the Killing spinor equation

DM ε ≡
[

∇M +
1

144

(

ΓPQRS
M − 8 δP

M ΓQRS
)

FPQRS

]

ε = 0. (2.21)

We check out the integrability condition

D[MDN ]ε = 0 (2.22)

and find that there is no Killing spinor when ΣH is timelike or spacelike. For instance in

the SM2 brane solution D[aDb]ε = 0 implies

[

Ȧ2 − e−12B

9

]

(∂µH∂µH) Γab ε = 0. (2.23)

Using (2.15) one finds that (Ȧ2 − e−12B/9) 6= 0 and thus ε = 0 since ∂µH∂µH 6= 0.

For the null solution (2.23) is identically satisfied and the integrability condition

D[aDν]ε = 0 implies

Γµ∂µH ε = 0. (2.24)

Imposing (2.24), one can find Killing spinors of the form

ε =











[Γµ∂µH] ef+gΓ123

ε0 SM2,

[Γµ∂µH] ef+g Γ123456

ε0 SM5,

(2.25)

where ε0 is a constant spinor, f = B/2, ġ = e−6B/12 for SM2 and ġ = e−3B/12 for

SM5 branes. Therefore the null backgrounds preserve 16 supersymmetries of D = 11

supergravity.

We should remark that the above solutions should be considered on H > 0 or H < 0

regions separately. If one tries to use them in the whole space then extra delta function

singularities appear, which arise since the metric functions (2.15) and (2.19) are discon-

tinuous on ΣH . For both SM2 and SM5 branes the Ricci tensor components containing

second derivatives of the functions A and B can be found as

Rab = −e−2BÄ (∂λH)(∂λH)δab + · · ·
Rµν = −e−2BB̈ (∂λH)(∂λH)ηµν + · · · (2.26)

where the dotted terms involve only the first derivatives plus the second derivatives of

(A + 2B) for SM2 and (2A + B) for SM5 branes which are however continuous across ΣH .

From (2.15) and (2.19) one finds as H → 0 that

e−2BÄ ∼ e−2BB̈ ∼











H(−4+
√

7/3)/3 δ(H) + · · · SM2,

H(−5+2
√

8/3)/3 δ(H) + · · · SM5.

(2.27)

Therefore to obtain supergravity solutions in the whole region, these backgrounds should

be supplemented by additional delta function sources on ΣH which may arise from the

coupling of elementary S-branes to the supergravity fields. In this case, however, one would

– 6 –
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expect the antisymmetric tensor fields also to be modified. To achieve this one may replace

(2.11) with H = |cµyµ + c|, which is the Greens function in one dimension perpendicular

to ΣH . Although there is no need for the negative signs in the metric functions (2.15) and

(2.19), the second derivatives of H now yield additional delta functions in the Ricci tensor.

Similarly, unless cµ is a null vector the form equations are modified such that d∗F ∼ δ(H)

for SM2 and dF ∼ δ(H) for SM5 branes.

As a final comment let us point out that it is possible to replace the flat transverse

space with a curved one

ηµν dyµdyν → dL2, (2.28)

where L is an arbitrary Ricci flat Lorentzian space. It is not difficult to verify that the SM2

and SM5 brane backgrounds (2.15) and (2.19) satisfy field equations provided H obeys

∇̂µ∇̂νH = 0, (2.29)

where ∇̂µ is the covariant derivative on L. If such a function H exists on L then it yields

a covariantly constant vector field kµ = ∇̂µH. Conversely, for any covariantly constant

vector field kµ one can find a local function H such that kµ = ∇̂µH. Moreover when kµ is

hypersurface orthogonal then H is globally well defined. Therefore, one can write down a

solution for each covariantly constant vector field on L where the metric functions (2.15)

or (2.19) depend on the (local) potential H and the antisymmetric tensor fields become

∗F = ∗̂ k for SM2 and F = ∗̂ k for SM5 branes, where ∗̂ is Hodge dual on L and k is the

one-form corresponding to kµ. The electric or the magnetic charge of this solution can be

calculated as

Q =

∫

∗̂ k (2.30)

which gives a finite result when the cycle dual to one-form k is compact.

3. Static S-branes

It is well known that a transverse direction to a p-brane worldvolume can be smeared out by

placing a continuum array of parallel branes in that direction. This can be achieved due to

supersymmetry which ensures stability. It is not clear whether one can place two parallel S-

branes separated by a finite time interval and thus whether smearing is possible. Assuming

this can be done one can consider an infinite array of S-branes. It can be claimed that

the stability of this system is not an issue since the time evolution is dictated by hand like

imposing a boundary condition. In this section we construct explicit solutions in D = 11

supergravity which can be thought to represent smeared S-branes.

Let us consider SM2 brane first. It is clear that the supergravity solution should

be static. Moreover the transverse SO(1, 7) symmetry should be broken down to SO(7)

subgroup and one can introduce a radial transverse coordinate. Thus the metric can be

taken as

ds2 = e2A
(

dx2
1 + dx2

2 + dx2
3

)

− e2Bdt2 + e2Cdr2 + e2DdΩ2
6, (3.1)

where Ω6 is the unit 6-sphere and the unknown functions depend on r. The three-form

potential A should couple to the Euclidean world volume and can be written as Aabc =

– 7 –
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f(r)εabc. Solving the antisymmetric tensor equation d ∗ F = 0 one finds (the indices refer

to the tangent space)

Fabcr =
k

2
e−B−6D εabc, (3.2)

where k is an integration constant. Let us point out that despite the similarity the above

background differs from brane anti-brane systems studied in the literature (see e.g. in [33 –

35]). The main distinction is in the choice of the antisymmetric tensor which is constructed

here to represent a Euclidean brane.

Imposing the gauge

C = 3A + B + 6D, (3.3)

one finds the following second order equations

A′′ = −k2

3
e6A,

B′′ =
k2

6
e6A, (3.4)

D′′ = 5 e6A+2B+10D +
k2

6
e6A,

together with a first order constraint

C ′2 − 3A′2 − B′2 − 6D′2 − k2

2
e6A − 30 e6A+2B+10D = 0, (3.5)

where prime denotes differentiation with respect to r. The system (3.4) can be integrated

step by step starting from A to yield

A = −1

3
ln [k cosh r] ,

B =
1

6
ln [k cosh r] + c1r, (3.6)

D =
1

6
ln [k cosh r] − 1

5
ln

[

10

c2
sinh

(c2 r

2

)

]

− c1r

5
,

where c1 and c2 are integration constants (we scale r to eliminate one constant in A). The

constraint (3.5) imposes

c2
2 =

5

3
+ 4 c2

1. (3.7)

One should choose c2 > 0 to have a well defined metric function D in (3.6) and c1 can be

positive, negative or zero. Introducing a new radial coordinate

r̃ =
[

tanh
(c2 r

4

)]−1/5
, (3.8)

the metric becomes

ds2 = e2A
(

dx2
1 + dx2

2 + dx2
3

)

− e2Bdt2 +
e2D

r̃2

[

dr̃2 + r̃2dΩ2
6

]

, (3.9)
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where the functions A, B and D are still given by (3.6) with r = 4 arctanh(r̃−5)/c2. In

(3.9) one can introduce Cartesian coordinates in the flat space parametrized by (r̃,Ω6) and

S0(7) symmetry, which acts as rotations around the fixed origin, becomes manifest.

The above solution is asymptotically flat as r̃ → ∞ (or r → 0) where the metric

functions can be expanded as

eA = k−1/3

[

1 + O
(

1

r̃10

)]

eB = k1/6

[

1 +
4c1

c2

1

r̃5
+ O

(

1

r̃10

)]

(3.10)

eD = k1/6
( c2

20

)1/5
r̃

[

1 − 4c1

5c2

1

r̃5
+ O

(

1

r̃10

)]

.

Here 1/r̃5 fall off is expected since the spatial transverse space is 7-dimensional. The

solution supports finite ADM mass (per unit Euclidean volume) which is given by

M = Ω6 k5/6 3c1

5κ2
, (3.11)

where κ is the gravitational coupling constant and Ω6 is the volume of unit 6-sphere. To

get positive mass one should choose c1 > 0. Although c2 does not contribute to ADM mass

it cannot be scaled away.

To analyze the interior region near r̃ → 1 (or r → ∞) let us introduce a new coordinate

u with

u =
e−c r

c
, c =

3c2 + c1

5
− 1

6
. (3.12)

We note that due to (3.7) c is always a positive constant. In the limit r̃ → 1, (or r → ∞),

u → 0 and the metric becomes

ds2 → u2/(3c)
(

dx2
1 + dx2

2 + dx2
3

)

− u−(1+6c1)/(3c)dt2 + du2 + u2−c2/cdΩ2
6, (3.13)

which is singular at u = 0 since for instance the coefficient of dx2
1 vanishes. Although the

solution is asymptotically flat and supports finite ADM mass it contains a naked singularity

in the interior.

To see whether there is any unbroken supersymmetry in the system we check out the

integrability condition (2.22). A simple calculation shows that D[aDt]ε = 0 implies

Γat
(

f + g Γ123
)

ε = 0 ⇒ ε = 0, (3.14)

where f = −A′B′eA+B−2C/4 and g = kB′eA−C−6D/24. Since
(

f + gΓ123
)

is an invertible

matrix the solution does not preserve any supersymmetry.

It is possible to smear some of the transverse directions and consider a metric of the

form3

ds2 = e2A
(

dx2
1 + dx2

2 + dx2
3

)

−e2Bdt2+e2Cdr2+e2D1

(

dy2
1 + · · · + dy2

m

)

+e2D2dΩ2
n, (3.15)

3One can consider the most general case where each transverse y-coordinate in (3.15) is multiplied by a

different function. It turns out that the equation system can still be decoupled in this general background.
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where m + n = 6 and n ≥ 2. The antisymmetric tensor should be modified as

Fabcr =
k

2
e−B−mD1−nD2 εabc. (3.16)

Imposing the gauge

C = 3A + B + mD1 + nD2, (3.17)

the differential equations are decoupled and the metric functions can be integrated step by

step to yield

A = −1

3
ln [k cosh r] ,

B =
1

6
ln [k cosh r] + c1r,

D1 =
1

6
ln [k cosh r] + c2r, (3.18)

D2 =
1

6
ln [k cosh r] − 1

(n − 1)
ln

[

2(n − 1)

c3
sinh

(c3 r

2

)

]

− c1 + (6 − n)c2

(n − 1)
r,

where the constants obey

n c2
3 − 20m c2

2 − 4n c2
1 − 8m c1 c2 + 2 − 2n = 0. (3.19)

If one chooses c1 = c2 then B = D1, i.e. the metric factors multiplying t and (y1, . . . , ym)

coordinates become equal. In this case there is an extra ISO(1,m) symmetry acting

on the space spanned by (t, y1, . . . , ym). The proper radial coordinate is given by r̃ =

tanh(c3r/4)
−1/(n−1) such that in (3.15)

e2Cdr2 + e2D2dΩ2
n → e2D2

r̃2

(

dr̃2 + r̃2dΩ2
n

)

. (3.20)

The solution is still asymptotically flat as r̃ → ∞ (or r → 0) and singular in the interior

as r̃ → 1(or r → ∞). The metric functions fall off at least with the power r̃−(n−1) so that

the ADM mass is finite.

Let us now consider the static SM5 brane solution. The metric and the antisymmetric

tensor are given by

ds2 = e2A
(

dx2
1 + · · · + dx2

6

)

− e2Bdt2 + e2Cdr2 + e2DdΩ2
3,

Fαβγt =
k

2
e−B−3D εαβγ , (3.21)

where the indices α, β, γ refer to the tangent space on Ω3 and the unknown functions

depend on r. The field equations can be solved to get

A = −1

6
ln [k cosh r] ,

B =
1

3
ln [k cosh r] + c1 r, (3.22)

C =
1

3
ln [k cosh r] − 3

2
ln

[

4

c2
sinh

(c2 r

2

)

]

− c1r

2
,

D =
1

3
ln [k cosh r] − 1

2
ln

[

4

c2
sinh

(c2 r

2

)

]

− c1r

2
,
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where the constants obey

c2
2 =

4

3
+ 4c2

1. (3.23)

Introducing the proper radial coordinate

r̃ =
[

tanh
(c2 r

4

)]−1/2
, (3.24)

the metric becomes

ds2 = e2A
(

dx2
1 + · · · + dx2

6

)

− e2Bdt2 +
e2D

r̃2

(

dr̃2 + r̃2 dΩ2
3

)

. (3.25)

The SO(4) R-symmetry acts on the flat space spanned by (r̃,Ω3). The solution is asymp-

totically flat as r̃ → ∞ (or r → 0) where the functions eA, eB and r̃eD fall off with the

powers 1/r̃4, 1/r̃2 and 1/r̃2, respectively. The ADM mass (per unit Euclidean volume) can

be calculated as

M = Ω3 k2/3 3c1

4κ2
, (3.26)

where κ is the gravitational coupling constant and Ω3 is the volume of unit 3-sphere. The

metric is singular as r̃ → 1 (or r → ∞, u → 0):

ds2 → u1/(3c)
(

dx2
1 + dx2

2 + dx2
3

)

− u−(2+6c1)/(3c)dt2 + du2 + u2−c2/cdΩ2
6, (3.27)

where u = e−cr/c and c = −1/3 + c1/2 + 3c2/4 is a positive constant. We check out that

there is no Killing spinor on this background and thus the solution is not supersymmetric.

Finally let us note the smeared solution where Ω3 → R× Ω2. The fields are given by

ds2 = e2A
(

dx2
1 + · · · + dx2

6

)

− e2Bdt2 + e2Cdr2 + e2D1dy2 + e2D2dΩ2
2,

Fαβyt =
k

2
e−B−D1−2D2 εαβγ , (3.28)

where

A = −1

6
ln [k cosh r] ,

B =
1

3
ln [k cosh r] + c1 r,

C =
1

3
ln [k cosh r] − 2 ln

[

2

c3
sinh

(c3 r

2

)

]

− (c1 + c2)r, (3.29)

D1 =
1

3
ln [k cosh r] + c2 r,

D2 =
1

3
ln [k cosh r] − ln

[

2

c3
sinh

(c3 r

2

)

]

− (c1 + c2)r,

and the constants c1, c2, c3 obey

c2
3 − 4 c2

2 − 4 c2
1 − 4 c1 c2 − 1 = 0. (3.30)

The proper radial coordinate is r̃ = tanh(c3r/4)
−1. The metric is asymptotically flat as

r̃ → ∞ and it is singular in the interior as r̃ → 1.
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4. Spacelike fluxbranes

The main example of a fluxbrane is the Melvin background of 4-dimensional Einstein-

Maxwell gravity [21] which is given by

ds2 =

(

1 +
B2r2

4

)2
[

−dt2 + dz2 + dr2
]

+
r2

(

1 + B2r2

4

)2 dφ2

F =
B

(

1 + B2r2

4

)2 r dr ∧ dφ. (4.1)

The constant B is the magnetic field strength on the axis r = 0. The total flux can be

calculated as ∫

R2

F =
4π

B
, (4.2)

which is finite although the lines have infinite extent. This is interpreted as the confinement

of the magnetic fluxlines by gravity. As r increases the orbits of φ become small and the

solution resembles a teardrop with an infinite tail.

To get a spacelike fluxbrane in this theory we perform the following analytical contin-

uations

r → i t, t → i y, B → iB, φ → i φ, (4.3)

which give

ds2 =

(

1 +
B2t2

4

)2
[

−dt2 + dy2 + dz2
]

+
t2

(

1 + B2t2

4

)2 dφ2

F =
B

(

1 + B2t2

4

)2 t dt ∧ dφ. (4.4)

This can be interpreted as a Euclidean flux 1-brane which has the worldvolume coordinates

(y, z). The fluxlines now extend in time to infinity but the integral of F is still finite. The

geometry is locally flat as t → 0 and the orbits of φ diminish as t → ∞, resembling a

teardrop extending in time.

Our aim in this section is to construct higher dimensional generalizations of spacelike

fluxbranes. Let us consider flux SM3 brane first which has the metric

ds2 = e2A
(

dx2
1 + · · · + dx2

4

)

− e2Bdt2 + e2CdΣ2
6, (4.5)

where the functions A,B,C depend on t and Σ6 is a Ricci flat (preferably compact) space.

For the antisymmetric tensor we take

Fabcd =
k

2
e−4A εabcd, (4.6)

so that the form equations are identically satisfied. This is an electrically charged solution

and the fluxlines (related to ∗F ) both extend in time and wrap over Σ6.
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Imposing the gauge B = 4A + 6C the field equations become

Ä =
k2

3
e12C

C̈ = −k2

6
e12C (4.7)

10Ȧ2 + 30Ċ2 + 48ȦĊ − k2

2
e12C = 0,

where dot denotes time derivative. These equations can be integrated to get

A =
1

3
ln [k cosh t] ± t

2
√

6
,

B =
1

3
ln [k cosh t] ± 4t

2
√

6
, (4.8)

C = −1

6
ln [k cosh t] .

The constant k is related to the field strength at t = 0. As t → ±∞, C → −∞ and thus the

transverse space is like the tail of an infinite tear drop (that has the shape of Σ6) appearing

in time. The total electric flux is given by

∫

∗F =
k

2
V6

∫ +∞

−∞

e−4A+B+6Cdt =
V6

k
, (4.9)

where V6 is the volume of Σ6. Therefore, when Σ6 is compact, the total charge is finite.

In a similar way one can construct flux SM6 brane which is given by

ds2 = e2A
(

dx2
1 + · · · + dx2

7

)

− e2Bdt2 + e2CdΣ2
3,

Fαβγt =
k

2
e−7A εαβγ , (4.10)

where the indices α, β, γ refer to the tangent space of the Ricci flat manifold Σ3. The

metric functions can be found as

A =
1

6
ln [k cosh t] ± t

2
√

21
,

B =
1

6
ln [k cosh t] ± 7t

2
√

21
, (4.11)

C = −1

3
ln [k cosh t] ,

and the total magnetic charge is

∫

F =
k

2
V3

∫ +∞

−∞

e−7A+B+3Cdt =
V3

k
, (4.12)

where V3 is the volume of Σ3.

As discussed in [27], there is an interplay between fluxbranes and p-branes. Namely, a

fluxbrane can be described as a limit of a brane anti-brane system which is similar to the

appearance of constant electric field lines in between the plates of a capacitor. One would
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expect a similar relation to hold for S-branes and flux S-branes. Namely a flux S-brane

should be realized as the limit of two S-branes separated by a finite time interval. It would

be interesting to search for this possibility using the regular S-brane solutions constructed

in [8 – 10].

One can work out generalizations of the above solutions where the Ricci flat space Σ is

replaced by a positively or negatively curved Einstein manifold (especially a solution with

a sphere looks natural for the compactness of fluxlines wrapping over it). However, as in

the case of usual fluxbrane backgrounds, the differential equations cannot be decoupled

due to the extra curvature terms. For instance in the flux SM3 brane solution the equation

system (4.7) is modified such that

Ä =
k2

3
e12C

C̈ = −k2

6
e12C − 5σe8A+10C (4.13)

10Ȧ2 + 30Ċ2 + 48ȦĊ − k2

2
e12C + 30σe8A+10C = 0,

where σ = +1 and σ = −1 correspond to Σ being a unit sphere and a unit hyperboloid in

(4.5), respectively. It seems impossible to decouple these equations due to σ terms which

are related to curvature of Σ. In this case one can try to integrate equations numerically

or search for special exact solutions. For σ = −1, we found a power law solution which can

be written as

A = − 1

24
ln (αt) + β,

B = −7

6
ln (αt) + 4β, (4.14)

C = −1

6
ln (αt) ,

where α = 2
√

2k and e8β = 3k2/10. Introducing the proper time coordinate dτ = −eBdt

the metric becomes

ds2 = (α̃τ)1/2 e2β
(

dx2
1 + · · · + dx2

4

)

− dτ2 + (α̃τ)2 dH2
6 , (4.15)

where α̃ = 2(5/3)1/2/3. Eq. (4.15) can be viewed as the asymptotic limit of a more general

solution and one can see that the integral of F converges as τ → ∞. Let us note that

the transverse space parameterized by (τ ,H6) is not flat and there is a conic singularity as

τ → 0 since α̃ 6= 1. For σ = +1, the power law ansatz does not work and we cannot find a

special solution. It seems that numerical techniques should be used to integrate equations

for this case.

5. Conclusions

In recent discoveries on nonperturbative aspects of string theory, p-brane solutions played

a crucial role. Especially backgrounds corresponding to D-branes gave a lot of new in-

formation since their dual CFT description as open strings obeying Dirichlet boundary
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conditions are known. S-brane solutions are also expected to shed some light on time de-

pendent phenomena in string theory. In worldsheet CFT, S-branes arise when the time

coordinate obeys a Dirichlet boundary condition. In terms of supergravity fields they can

be described as time dependent solutions. Despite recent interesting developments it seems

that to have a better understanding of S-branes more information is needed in both side

of these dual descriptions.

In this paper, we construct new S-brane solutions in D = 11 supergravity theory.

Firstly, we seek for solutions that can be characterized by a harmonic function H on the

transverse space. It turns out that the Einstein’s equations demand H to be a linear

function. The solutions can be classified according to the codimension one hyperplane ΣH

being spacelike, timelike or null. We observe that spacelike backgrounds are identical to

the previously constructed SM2 and SM5 brane solutions with flat transverse spaces. Our

construction reveals two additional family corresponding to timelike and null planes. It is

possible to superpose different solutions which would simply rotate or shift the plane ΣH .

The null solution preserves 16 supersymmetries of D = 11 supergravity and others are

non-supersymmetric. We also show that the solutions can be generalized naturally with

arbitrary Ricci flat Lorentzian spaces. The harmonic S-brane solutions can be thought

as the generalizations of S-branes with a flat transverse space. It would be interesting to

consider other cases with spherical or hyperbolic transverse spaces and find their harmonic

extensions.

We should note that the solutions where ΣH is not spacelike admit timelike or null

Killing vectors and thus it is difficult to interpret them as backgrounds describing decays

of unstable branes. The static solution can be thought to represent the end of the decay

process since the corresponding background should be static asymptotically. On the other

hand, it is natural to expect that the supersymmetric null solution is related to boosted

M2-branes in a certain limit. In any case, it is interesting that all these solutions can be

described as different subclasses of the same family.

In supergravity brane solutions it is crucial to identify symmetries properly. For an

Sp-brane in D dimensions one would expect an SO(1,D−p−2) symmetry in the transverse

space. However in some physical applications the symmetry groups are necessarily broken

down. In terms of gauge theories living on the branes that would correspond to giving

vacuum expectation values to some scalars. In supergravity description symmetries are

broken in the solutions when parallel branes are separated from each other. It is not clear

whether one can place two parallel S-branes separated by a finite time interval. Assuming

this can be done, one can smear the time coordinate and SO(1,D−p−2) symmetry should

be broken down to SO(D−p−2) subgroup. In this work we also construct solutions which

can be thought to represent time smeared static S-branes. These backgrounds resemble

black p-brane solutions in that they are asymptotically flat and support finite ADM masses.

However static S-branes are not black objects since they contain generic naked singularities

in the interior. They are also non-supersymmetric.

Finally, we obtain solutions for spacelike fluxbranes. A fluxbrane background has

antisymmetric tensor field components tangent to the transverse space. The main char-

acteristic property is the convergence of the total charge, although fluxlines have infinite
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extent. For a spacelike fluxbrane the transverse space is Lorentzian. Not surprisingly the

fluxlines now extend in time from past to future infinity but the total charge is still finite.

As for timelike fluxbranes one would expect to obtain spacelike backgrounds as the limit

of a solution which describes S-brane pairs separated by a finite time interval.

Various S-brane solutions have been constructed in the literature and in this paper

we obtain new solutions which have interesting physical properties. We believe however

that the final word on supergravity description of S-branes has not been said. Especially,

one should have a clearer understanding of the relation between supergravity solutions and

CFT description of S-branes. For an object that appears for a moment in time one would

expect the corresponding solution to be localized both in time and in transverse spatial

coordinates. In this case, however, it seems SO(1,D − p− 2) symmetry should be broken.

It would be interesting to study this possibility and construct purely localized S-brane

solutions.
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